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Abstract
Herein, we investigate the structural, electronic and mechanical properties of zigzag graphene
nanoribbons in the presence of stress by applying density functional theory within the
GGA-PBE (generalized gradient approximation-Perdew–Burke–Ernzerhof) approximation. The
uniaxial stress is applied along the periodic direction, allowing a unitary deformation in the
range of ±0.02%. The mechanical properties show a linear response within that range while a
nonlinear dependence is found for higher strain. The most relevant results indicate that Young’s
modulus is considerable higher than those determined for graphene and carbon nanotubes. The
geometrical reconstruction of the C–C bonds at the edges hardens the nanostructure. The
features of the electronic structure are not sensitive to strain in this linear elastic regime,
suggesting the potential for using carbon nanostructures in nano-electronic devices in the near
future.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently a new carbon nanostructure, called the graphene
nanoribbon (GNR), has emerged and attracted the attention
of the scientific community because of the promise for
its use in spintronics. It is mainly attributed to the
work of Son et al [1, 2], who predicted that an in-plane
electric field, perpendicular to the periodic axis, induces a
half-metal state in zigzag nanoribbons (ZGNR). Apart from
the interesting dependence of the electronic structure upon an
electric field, this is a promising material for future spintronic
devices, since it could work as a perfect spin filter. Very
recently Campos-Delgado et al [3] reported a chemical vapour
deposition route (CVD) for the bulk production of long, thin,
and highly crystalline graphene ribbons (less than 20–30 μm in
length), with widths from 20 to 300 nm and small thicknesses
(2–40 layers). This experimental advance further increases the
expectations for the use of these materials in high-tech devices.

4 Author to whom any correspondence should be addressed.

In parallel there is increased interest in the physical
properties of carbon nanostructures in general, due to their
outstanding mechanical and electronic properties. Recently,
Lee et al [4] measured the mechanical properties of a single
graphene layer, demonstrating that graphene is the hardest
material known, since its elastic modulus reaches a value
of 1.0 TPa. In addition, much effort has been dedicated
to studying the electronic properties of graphene, because
creating a gap could allow the use of graphene in field
effect transistors. Many mechanisms have been proposed
for that purpose: nano-patterning, creating quantum dots,
using multilayers, covalent functionalization [5], doping with
heteroatoms such as sulfur [6] and applying mechanical
stress [7, 8]. In this last case, within linear elasticity theory
and a tight-binding approach, Pereira et al [8] observed that
strain can generate a bulk spectral gap. However this gap is
critical, requiring threshold deformations in excess of 20%, and
only along preferred directions with respect to the underlying
lattice.
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The evidence presented above clearly indicates that it is
important to know how the electronic properties of ZGNR
depend on stress, in order to predict its performance in future
devices (e.g. gates).

In the literature, many representative results concerning
the simulation mechanical properties of carbon nanostructures
can be found. In particular classical methods have been
widely and successfully applied to: polymerized nanotubes [9],
nanotube networks [10], ‘super’ carbon nanotubes [11] and
Möbius and twisted graphene nanoribbons [12]. However
there are very few reports relating to the study of strain
in graphene nanoribbons [13–15] and none of them report
Young’s modulus. The main conclusions from these works
indicate that there is no important variation of the electronic
properties of zigzag nanoribbons due to stress–strain effects
(i.e. energy gaps and local magnetic moments) and there is
no information regarding the mechanical properties of this
nanostructure.

To the best of our knowledge, in this work we present
the first systematic determination of Young’s modulus,
Poisson’s ratio and the calculated shear modulus for graphene
nanoribbons. The paper is structured as follows. In section 1.1
we describe the state of the art regarding the mechanical
properties of carbon nanoribbons and related nanostructures.
In section 1.2 we briefly review the most relevant features of
the electronic structure of ZGNR for the present simulation. In
section 3, we present and discuss Young’s modulus, Poisson’s
ratio and the shear stress for different ZGNR.

1.1. Mechanical properties of carbon nanostructures

Young’s modulus ‘E’ is a measure of the stiffness of a
solid, and together with two additional elastic parameters
(the shear modulus ‘G’ and Poisson’s ratio ‘υ’) defines
the mechanical properties of the material. In the case of
graphene, because of the reduced dimensionality, it makes
more sense to define the in-plane stiffness (E2D) rather than
the classical 3D Young’s modulus (E3D). For this reason in
graphite the elastic properties can be considered independent
of the interlayer distance between graphene, c0 = 3.35 Å,
and Young’s modulus can be described as follows: E2D =

1
A0

( ∂2 ES
∂ε2

x
)E0 = E3Dc0, where ES, εx and A0 corresponds to the

total energy, linear strain and equilibrium reference area of the
2D material, respectively. The in-plane stiffness of graphite
is obtained by considering an axial load over graphene. The
value obtained in this case is E3D = 1.02(3) TPa [16]. It
allows us to obtain E2D = 3.41(9) TPa Å. This value is
almost identical to that obtained experimentally for graphene,
E2D = 3.42(30) TPa Å [4], using nano-indentation with an
atomic force microscope. This result is in agreement with
those reported by Kudin et al [17] and Van Lier et al [18].
Using ab initio methods they reported a Young’s modulus of
E3D = 1.02 TPa Å [17] and 1.11 TPa Å [18]. Poisson’s ratio
is unambiguously defined in terms of the transverse ratio over
the longitudinal variation, and has a value of υ = 0.149. Many
representative results for graphene and nanotubes, based on
Reddy et al [19] and other workers, are presented in table 1
[10, 17–30].

Table 1. Representative results for different carbon nanostructures.

Reference E 3D (TPa) υ Remarks

Graphene

[10] 0.799 — Graphene (force field)
[17] 1.02 0.149 Graphene (ab initio)
[18] 1.11 — Graphene (ab initio)
[19] 1.012 0.245 Graphene (Brennera)

[19] 0.669 0.416 Graphene (Brennerb)
[20] 0.694 0.412 Graphene (Brenner)
[24] 1.11 0.45 Graphene (truss model)
Present work 0.96 0.17 Graphene (ab initio)

Carbon nanotubes

[21] 0.694 — SWNT (Brenner)
[23] 0.97 0.28 SWNT (empirical model)
[25] 0.213–2.08 0.16 SWNT (MM)
[26] 0.32–1.47 — SWNT (experiments)
[27] 0.7 — SWNT (MD)
[28] 1.0 0.25 DWNT (vibrations)
[29] 0.81–1.13 — SWNT (experiments)
[30] c 0.8–1.05 — SWNTS (ab initio)
[30] 1.05 — SWNT (5, 5)-(ab initio)
Present work 1.01 — SWNT (5, 5)-(ab initio)

a Non-minimized potential; b minimized potential; c this result
was converted to E 3D for comparison purposes, using:
E3D = E2Dc0.

Single-walled carbon nanotubes (SWCNT) are an
example of a one-dimensional system described in terms of
a 2D property E2D, since two parameters must be given, the
tube length (L) and the tube radius (r), in order to gain
independence from size effects. Several expressions have
been published for their mechanical properties in terms of
multidimensional Young’s moduli: E3D, E2D, etc. [29, 30].
The values reported show a wide variation in experimental
EnD values, with up to an order of magnitude of difference.
This is mainly due to the difficulty in determining the precise
structure of the nanotubes under study, the presence of defects,
chirality, etc. Recently, Wu et al [29] used the combined
optical characterization of individual SWCNT, coupled with
an magnetic actuation technique, to measure Young’s modulus
of nanotubes with a known chirality. Young’s modulus was
E3D = 0.97(16) TPa, assuming a wall thickness of c = 3.4 Å
corresponding to the interlayer spacing in graphite. Within
the experimental accuracy no dependence on the nanotube’s
chiral index was found. This result agrees quite well with
theory, in particular with the values reported by Bogár et al
[30]. Employing an all electron DFT method, they reported
E2D for different tube radii ranging from r = 1.32 to 4.11 Å.
They concluded that there is no dependence between Young’s
modulus and the chirality of the nanotube.

1.2. Electronic and geometrical structure of zigzag
nanoribbons

In graphene nanoribbons, the presence of different types
of boundary shapes, called edges, modifies the electronic
structure of the material. The major effects are observed at
the Fermi level, displaying unusual magnetic and transport
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(a) (b)

Figure 1. (a) Graphene nanoribbon with N = 4, displaying its smallest unit cell; the arrow shows the periodic direction �a. (b) Spin density
map, showing the antiferromagnetic arrangement between opposite edges.

Table 2. Energy gaps for different zigzag graphene nanoribbons.

Width (N) Energy gap (eV)

4 0.63
5 0.59
6 0.54
7 0.50
8 0.46
9 0.43

10 0.40

features [31]. The zigzag edges present electronic localized
states at the boundaries, corresponding to non-bonding states
that appear at the Fermi level as a large peak in the density
of states. The non-magnetic solution has many states at the
Fermi level, which produce a strong instability that can be
resolved by spin polarization or geometrical distortion. Due
to the non-bonding character of the zigzag localized edge
states, the geometrical reconstruction is unlikely to happen [32]
and the spin polarization of the electronic density establishes
an antiferromagnetic arrangement with the opening of a gap,
yielding a Slater insulator [33]. The opening of the gap is
related to the ZGNR width, since it is a consequence of the
interaction between edges. For this reason wider ribbons, with
longer distances between opposite edges, recover the graphene
geometry with a gap equal to zero. The tendency observed
corresponds to an exponential decay of the energy gap when
increasing the nanoribbon width (N). Table 2 shows our results
for N = 4, 5, 6, 7, 8, 9 and 10 (see figure 1).

2. Methods

The theoretical study of the uniaxial stress on different
ZGNR is based on first principles density functional
theory [34, 35], which we successfully used to study, bulk
graphene, thioepoxidated SWCNT, sulfur doped graphene
and double wall CNT [6, 36–38]. The simulations are

performed using the SIESTA code [39–41], which adopts
a linear combination of numerical localized atomic-orbital
basis sets for the description of valence electrons and
norm-conserving non-local pseudopotentials for the atomic
core. The pseudopotentials were constructed using the
Troullier and Martins scheme [42], which describes the
interaction between the valence electrons and atomic core. We
selected a split-valence double-ζ basis set with polarization
orbitals for all the carbon atoms. The extension of the
orbitals is determined by cutoff radii of 4.994 and 6.254 au
for the s and p channels respectively, as obtained from an
energy shift of 50 meV due to localization. The total
energy was calculated within the Perdew–Burke–Ernzerhof
(PBE) form of the generalized gradient approximation (GGA)
xc-potential [43]. The real-space grid used to represent the
charge density and wavefunctions was the equivalent of that
obtained from a plane-wave cutoff of 230 Ryd. The atomic
positions were fully relaxed in all cases by using a conjugate
gradient algorithm [44] until all forces were reduced to less
than 10 meV Å

−1
. A Monkhorst–Pack grid [45] with a 300 ×

2 × 2 supercell, defined in terms of the actual supercell, was
selected to obtain a mesh of 600 k-points in the full Brillouin
zone. All these parameters allow the convergence of the total
energy, which corresponds to the antiferromagnetic solution in
all cases.

In order to validate our methodology we calculated
Young’s modulus of (5, 5) SWCNT, for which the literature
shows several results from ab initio methods (see table 1).
The smallest unit cell contains a total of 20 carbon atoms.
With the purpose of studying the dependence on the number
of carbon atoms, we simulated the case of 40 carbon atoms per
unit cell. The Young’s moduli obtained are E3D = 1.03(2)

and E3D = 1.01(3) TPa, respectively, for 20 and 40 carbon
atoms in the unit cell. The results are consistent within the
uncertainty, which was estimated from the variance obtained
from the adjustment of the second order fitting of the energy
upon unitary deformation. Therefore one can conclude that the
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results are not affected by the number of supercells used along
the periodic direction.

Additionally the results are in good agreement with those
reported in the bibliography; see table 1, particularly the
excellent agreement with those from Bogár et al [30]. However
there exist some differences in Young’s modulus of graphene
obtained by classical methods. Force field approaches seem to
underestimate Young’s modulus of graphene by 20% [10]. In
the case of Brenner potentials, it has been demonstrated there
is a strong dependence of E3D on the equilibrium adjustment
yield used in the calculation [19]. Young’s modulus changes
from 1.11 to 0.7 TPa when the potential is optimized. For this
reason any comparison should be done taking into account the
methodology involved in the simulation.

Regarding the geometry in graphene nanoribbons, we can
distinguish two C–C bond orientations: the bond perpendicular
to the crystalline periodic direction d(|) and the bond diagonal
to the normal direction d(/). The bond distances differ from
the inner part of the ribbon (bulk) with respect to the atoms
at the edge. In the case of bulk C–C distances we found
d(|)bulk = 1.44 Å and d(/)bulk = 1.44 Å, while at the edge of
the ribbon we found d(|)edge = 1.46 Å and d(/)edge = 1.43 Å.
This result agrees with the tendency observed by Pisani et al
[33], where the perpendicular bond elongates at the edge,
contracting the corresponding diagonal bond at the edge. It
promotes an increase of the zigzag C–C–C angle from 120◦ in
the bulk to 121.9◦ at the edge. This trend is observed for the
whole unstressed studied ribbons.

For all of these reasons, we can unequivocally conclude
that our methodology is valid.

The ZGNR selected for the simulation correspond to N =
4, 5, 6, 7, 8, 9 and 10. Since the code applied was designed
for three-dimensional materials, we designed special unit cells.
All the cells were orthogonal, with the GNR placed in the
ab plane, and oriented with the periodic direction along the
a axis, see figure 1 for the ZGNR N = 4 sketch. In order to
avoid interference between symmetry images, vacuum regions
of 15 Å were added along the b and c directions. In the case
of the smallest unit cell, the a axis value for every cell is
approximately a0 = 2.495 Å, with a total number of atoms of
2N + 2. With the purpose of increasing the number of degrees
of freedom in each case, the cells were expanded in units of
four along the a axis (a = 4a0), it allows us to multiply by
four the number of atoms inside the supercells, according to
8N + 8. The total number of atoms in each case is: 40, 48, 56,
64, 72, 80 and 88.

3. Results and discussion

The stress–strain curves are obtained by applying varying
stress to the GNR, then allowing full atomic relaxation together
with full unit cell parameter optimization until the desired
stress tensor is reached. Since we are considering only
a uniaxial strain, the Voigt tensor has only one non-zero
component: [σx, σy, σz, σxy , σxz , σyz] ⇒ [σx , 0, 0, 0, 0, 0].
The selected stress components of the Voigt tensor allow us
to establish strains in the range of εx = ±0.020 for the
whole series, which assures a linear stress regime [46, 47]. It

(a)

(b)

Figure 2. (a) Normalized total energy versus strain, and (b) the
corresponding force versus strain for the ZGNR with N = 10,
indicating a linear stress–strain regime.

corresponds to a quadratic dependence of the total energy upon
the strain. The most important features of the data treatment
are presented in figure 2 for the ZGNR where N = 10.

While the second derivative of the total energy is easily
obtained, the reference surface is ambiguously defined, with
a dependence of the results upon the surface selection. In
particular, a problem arises with the selection of the GNR’s
width, since it is a surface of pruned edges. In our case we
have selected two different ways of determining the reference
width of the GNR: the shortest C–C width (dA) and the longest
C–C width (dB). A sketch of these distances is presented
in figure 3(a). It is clear that neither of them are the best
selection, and this becomes a problem when we want to
compare these results in the N-infinity limit, corresponding
to graphene. For this reason all the results are presented,
together with the results for graphene. Figure 3(b) shows
the variation of E2D with the GNR’s width N . The same
results are presented in table 3. To check the reliability of
the calculations, the case of N = ∞ (graphene) was studied.
In this case we take a rectangular supercell with 32 carbon
atoms. Each periodic crystalline axis was oriented along the
zigzag and armchair directions, selecting a c value of 20 Å in
order to avoid interference between the images. The stress was
applied along the zigzag axis. The obtained Young’s modulus,
E3D = E2D/c0 = 0.964(9) TPa, agrees quite well with earlier
reported values (see table 1), and Poisson’s ratio, υ = 0.17,
matches the ones reported by Kudin et al [17] (υ = 0.149) and
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a

b

(a)

(b)

Figure 3. (a) The N = 5 ZGNR sketching the distances: dA

(square-black) and dB (circle-red). (b) The E 2D Young’s modulus
according to the different distances considered in the model which
are expressed in terms of the ribbon’s width (N) in (c). The
horizontal blue line corresponds to the graphene results. (Colour
online.)

Liu et al [48] (υ = 0.186). This is further evidence that helps
us to validate our methodology.

It is important to note that the results with the greatest
difference correspond to E3D = 0.799 TPa. The universal
force field seems to overestimate the bulk modulus and to
underestimate the basal plane Young’s modulus by 20%, in the
case of perfect crystalline structures.

The results show E2D
A and E2D

B decrease when N
increases, always having a Young’s modulus higher than in
graphene. We can argue that ZGNR are harder than graphene.
This tendency is the opposite of the case for carbon nanotubes,
and the reason can be easily explained in terms of graphene
bending. The curvature of the CNT softens the rolled-up
graphene sheet because of the loss of overlapping between

Table 3. Final E2D Young’s modulus obtained from the different
GNR widths (di ).

E2D
A E2D

B
N dA dB (Å) (TPa Å)

4 05.80 07.19 5.04 4.07
5 08.66 09.35 4.21 3.90
6 10.12 11.51 4.27 3.76
7 12.98 13.68 3.88 3.68
8 14.45 15.83 4.08 3.72
9 17.30 18.00 3.84 3.69

10 18.77 20.16 3.91 3.64
∞ — 3.23

Table 4. Poisson’s ratio and estimated shear modulus for dA and dB

models.

N υA υB G A G B

4 0.129 0.261 0.667 0.482
5 0.204 0.250 0.522 0.466
6 0.150 0.230 0.555 0.456
7 0.207 0.223 0.480 0.449
8 0.156 0.216 0.526 0.457
9 0.200 0.226 0.478 0.450

10 0.190 0.216 0.490 0.447
∞ 0.179 0.408

the sp2 orbitals, with a more pronounced effect for smaller
tubes [30]. In the case of GNR the sheet is always plane, with
a perfect sp2 overlapping and strong stiffness. In principle,
this result should not be expected, but the response could be
understood qualitatively in terms of two opposing effects: the
curvature of graphene and geometrical edge reconstruction.
The higher the curvature the lower the orbital overlap, and
hence the lower the hardness. Furthermore our results indicate
that the energy necessary to deform the ribbons (strain energy),
expressed as energy per atom, is lower when more carbon
atoms are involved; thus fewer atoms harden the material. The
origin of this effect lies in the geometrical reconstruction of
the C–C bonds positioned at the edge. As was mentioned in
the introduction, the diagonal C–C distances of GNR at the
edges contract by ∼0.02 Å, while at the same time the zigzag
C–C–C angle increases by ∼2◦, aligning the stronger C–C
diagonal bonds more parallel to the periodic direction of the
nanostructure and hardening the bonds. This effect is more
evident in the case of thin GNR since there are few C–C bulk
bonds, and as the GNR width increases, the bulk bonds prevail,
diluting the effect of the harder C–C bonds at the edge. In the
case of nanotubes the relaxation effect on the edge does not
exist, and therefore the curvature effect prevails.

Poisson’s ratio presents a similar tendency to the one
observed for Young’s modulus. The results are shown in
figure 4 and table 4, where the υi = −εi

y/εx (i = A and B)
values are presented together with the value for graphene. The
tendency between υ and N corresponds to a damped oscillation
in the case of υA, while the dependency is smoother for the case
of υB . In the extrapolated limit to infinite widths the ratios υi

are υA = 0.18 and υB = 0.22.
The shear modulus can be obtained using G3D =

E3D/2(1 + υ). For graphene we obtained G3D = 0.408 TPa.

5



J. Phys.: Condens. Matter 21 (2009) 285304 R Faccio et al

Figure 4. The υ dependence upon the GNR width (N). The
horizontal blue line corresponds to the graphene results.

This value agrees with G3D = 0.384 TPa reported by
Reddy et al [19], but differs by a factor of almost two from
those reported by Sakhaee-Pour [49]. Employing a force
field method for finite graphene sheets, with different edge
terminations, he obtained G values that ranged from 0.21
to 0.23 TPa. It is important to note that the corresponding
Poisson’s ratio reported by Sakhaee-Pour was calculated using
E and υ. However our results are more similar to those
reported for SWCNT [50, 51], for which there have been
reported G3D values ranging from 0.250 to 0.485 TPa. This
is a valid reference for our results, since in this case the
mechanical load involves only a single graphene layer. This
is the main reason why the shear moduli of SWCNT are higher
than MWCNT, since in this last case there exists a sliding effect
between nanotubes that reduces the shear modulus. On the one
hand, this discrepancy can be attributed to the different nature
of the methods used for the simulation. On the other hand
our results were estimated for two independent parameters E2D

and υ. Regarding the dependence of the shear modulus upon
ribbon width, see figure 5 and table 4, we found a similar
dependence to Young’s modulus versus N . This is to be
expected, since the shear modulus expression is dominated
by its numerator, corresponding to Young’s modulus, while
the denominator remains almost constant, since Poisson’s ratio
remains almost constant. Further simulations, including shear
deformation, should be done in order to shed more light on this
subject.

Regarding the electronic structure features of GNR we
found no significant dependence of these properties upon
strain. These results agree with those reported earlier [13–15],
whereas for the case of ZGNR a small variation of the energy
gaps and local magnetic moments has been found, with no
variation in the ordering of the occupied-bands. In our case
the energy gaps increase by δEgap = 0.02 eV for a positive
strain of ε = 0.02, and reduces by δEgap = −0.02 eV for a
compressive strain ε = −0.02. These results are valid for all
the studied GNR widths. Similar results are obtained for the
local magnetic moments at the carbon edges, in all the cases

Figure 5. Shear modulus G3D for GNR indicating the estimated
value for graphene.

the variation is on the order of ±3% for the same strain range
studied.

4. Conclusions

In summary, the electronic and mechanical properties of
stressed ZGNR were calculated using ab initio density
functional theory. The proposed models allowed us to
obtain the corresponding Young’s modulus, shear modulus and
Poisson’s ratio for ZGNR with different widths. In all the
cases the GNR present higher constants than graphene, but they
approximate to this value when the GNR width is increased.
This effect could be explained in terms of the hardness of
the C–C bonds positioned at the edges of the GNR, due to
the observed geometrical reconstruction. This property could
lead to important consequences regarding the structure of the
edge of this nanostructure, because chemical substitution, the
appearance of defects, and chemical doping could soften or
stiffen the edges. All these possibilities could lead to an
important variation of the mechanical properties of GNR, in
particular for the case of shorter GNR of low-dimensional
systems. It would be interesting to simulate the presence
of strong donating and strong acceptor groups as functional
groups substituting the presence of the single H atoms.
Regarding the mechanical properties, a linear dependency of
stress upon strain has been observed in the region from ε =
−0.02 to +0.02. A nonlinear dependence is found for higher
strain. The electronic structure features are not sensitive to
strain in this linear elastic regime, opening up the promise for
the use of carbon nanostructures in nano-electronic devices in
the near future.
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